ON A PROBLEM OF ERDŐS CONCERNING PROPERTY B

H. L. ABBOTT and A. LIU

Received 9 January 1986

A family \mathcal{F} of sets has property B if there exists a set S such that $S \cap F \neq \emptyset$ and $S \supset F$ for every $F \in \mathcal{F}$. \mathcal{F} has property B(s) if there exists a set S such that $0 < |F \cap S| < s$ for every $F \in \mathcal{F}$. Denote by m(n) (respectively m(n, s)) the size of a smallest family of n-element sets not having property B (respectively B(s)). P. Frdős has asked whether $m(n, s) \geq m(s)$ for all $n \geq s$. We show that, in general, this inequality does not hold.

A family \mathscr{F} of sets is said to have property B if there exists a set S such that $S \cap F \neq \emptyset$ and $S \supset F$ for every $F \in \mathscr{F}$. \mathscr{F} is said to have property B(s) if there exists a set S such that $0 < |F \cap S| < s$ for every $F \in \mathscr{F}$. Let n and s be positive integers, $n \geq s$. Denote by m(n) (respectively m(n, s)) the size of a smallest family of n-element sets not having property B (respectively B(s)). Note that m(n, n) = m(n). A survey of known results concerning m(n) and m(n, s) is given in [2].

P. Erdős has asked whether $m(n, s) \ge m(s)$? This is clearly so if s=1 since m(n, 1) = m(1) = 1, and is known to be so for s=2, 3 (see [1]). The object of this note is to prove that the answer, in general, is no. We shall prove the following theorems:

Theorem 1. For all $s \ge 1$,

(1)
$$m(2^{s-1}, s) \leq 2^{s} - 1.$$

Theorem 2. For all $s \ge 1$ and $n \ge 5 \cdot 2^{2s-3}$

(2)
$$m(n, s) \leq 2^{s+2}-2s-4.$$

It has been shown by Beck [4] that for every $\varepsilon > 0$, $m(s) > s^{(1/3)-\varepsilon} 2^s$, provided $s \ge s_0(\varepsilon)$. It is clear that Theorem 2 and this result imply that m(n, s) < m(s) for s large and n large compared to s. We remark that Spencer [5] has given a proof of Beck's theorem which is simpler than that given in [4], although it is based on similar ideas.

Proof of Theorem 1. Let V_s denote the s-dimensional vector space over \mathbb{Z}_2 . By a hyperplane we mean an (s-1)-dimensional subspace of V_s ; equivalently, the set of

AMS subject classification (1980): 05 A 05

points $(x_1, x_2, ..., x_s)$ satisfying an equation of the form $a_1x_1 + a_2x_2 + ... + a_sx_s = 0$. Let \mathcal{H}_s denote the set of all hyperplanes and let $\mathcal{V}_s = \{\overline{H}: H \in \mathcal{H}_s\}$, where \overline{H} denotes, as usual, the complement of H. Observe that if H is given by $a_1x_1 + a_2x_2 + ... + a_sx_s = 0$, then \overline{H} is given by $a_1x_1 + a_2x_2 + ... + a_sx_s = 1$. We show that \mathcal{V}_s does not have property B(s). Let S be a set which meets each member of \mathcal{V}_s . It cannot occur that the subspace of V_s spanned by S has dimension $\leq s-1$, because if this were the case S would lie in some hyperplane H and thus miss \overline{H} . Hence S contains s linearly independent points, $X_i = (x_{i1}, x_{i2}, ..., x_{is})$, i=1, 2, ..., s. Since $\det [x_{ij}] \neq 0$, the system

$$x_{i1}a_1 + x_{i2}a_2 + ... + x_{is}a_s = 1, \quad i = 1, 2, ..., s$$

has a (unique) solution $a_1, a_2, ..., a_s$. Then the hyperplane H given by $a_1x_1 + a_2x_2 + ... + a_sx_s = 0$ does not contain any of the points X_i , i = 1, 2, ..., s. Thus $|S \cap \overline{H}| \ge s$. as required. Since \mathscr{V}_s consists of $2^s - 1$ sets of size 2^{s-1} , (1) holds.

In the proof of Theorem 2 we shall need to use the following two constructions:

The abutting construction: Let $\mathscr{F}_1 = \{F_j^1 : j=1, 2, ..., m\}$ and $\mathscr{F}_2 = \{F_j^2 : j=1, 2, ..., m\}$ be families of sets satisfying $\hat{\mathscr{F}}_1 \cap \hat{\mathscr{F}}_2 = \emptyset$. Here, and in what follows, we use $\hat{\mathscr{F}}$ to denote

$$\bigcup_{F \in \mathscr{F}} F$$
.

The family $\{F_j^1 \cup F_j^2 : j=1, 2, ..., m\}$ is said to be obtained by abutting \mathcal{F}_1 to \mathcal{F}_2 . The construction generalizes to the case of more than two families in the obvious way. If A is a set disjoint from $\hat{\mathcal{F}}$, the family $\{F \cup A : F \in \mathcal{F}\}$ is said to be obtained by abutting A to \mathcal{F} . We denote this family by (\mathcal{F}, A) .

Let \mathscr{F}^* be obtained by abutting any number of copies of \mathscr{F} . It was pointed out in [1], and it is easy to prove, that if \mathscr{F} does not have property B(s), neither does \mathscr{F}^* . We observe, in anticipation of the next construction, that if every t-subset of $\widehat{\mathscr{F}}$ is contained in at least one member of \mathscr{F} then every t-subset of $\widehat{\mathscr{F}}^*$ is contained in some member of \mathscr{F}^* .

The tower construction: Let $1=l_1 < l_2 < ... < l_s$ be positive integers. Let n be a positive integer and write $n=q_il_i+r_i$, $0 \le r_i < l_i$. Let t be the largest integer such that $r_t=0$. For k=t, t+1, ..., s let \mathscr{F}_k be a family of sets with the following properties:

- (i) $|F| = l_k$ for each $F \in \mathcal{F}_k$;
- (ii) \mathcal{F}_k does not have property B(k);
- (iii) each (k-1)-subset of $\hat{\mathscr{F}}_k$ occurs in at least one member of \mathscr{F}_k .

Let \mathscr{F}_k^* be the family obtained by abutting q_k copies of \mathscr{F}_k . Then each member of \mathscr{F}_k^* is of size $q_k l_k$ and, by the remarks made in connection with the abutting construction, \mathscr{F}_k^* has properties (ii) and (iii).

Suppose that

(iv)
$$|\hat{\mathcal{F}}_t^*| \leq |\hat{\mathcal{F}}_{t+1}^*| \leq \dots \leq |\mathcal{F}_s^*|.$$

It is clear that we may construct the families \mathcal{F}_k^* so that

(iv)'
$$\hat{\mathscr{F}}_{t}^{*} \subseteq \hat{\mathscr{F}}_{t+1}^{*} \subseteq ... \subseteq \hat{\mathscr{F}}_{s}^{*}.$$

Suppose further that

(v)
$$|\hat{\mathscr{F}}_{s-1}^*| + r_{s-1} + r_{s-2} + \dots + r_{t+1} \leq |\hat{\mathscr{F}}_{s}^*|.$$

Then we may choose sets $A_{s-1}, A_{s-2}, ..., A_{t+1}$, which are pairwise disjoint, and which satisfy $A_k \subset \hat{\mathcal{F}}_s^* - \hat{\mathcal{F}}_{s-1}^*$ and $|A_k| = r_k$ for k = s-1, s-2, ..., t+1. Let A_s be a set of size r_s which is disjoint from $\hat{\mathcal{F}}_s^*$ and let $\mathcal{F} = \mathcal{F}_t^* \cup (\mathcal{F}_{t+1}^*, A_{t+1}) \cup ... \cup (\mathcal{F}_s^*, A_s)$. \mathcal{F} is a family of *n*-element sets and $|\mathcal{F}| = |\mathcal{F}_s^*| + |\mathcal{F}_{s-1}^*| + ... + |\mathcal{F}_t^*|$.

We claim that \mathscr{F} does not have property B(s). If t=s then $\mathscr{F}=\mathscr{F}_s^*$ and everything reduces to the abutting construction. Hence suppose t < s. Let S be a set which meets each member of \mathscr{F} . We need to show that $|S \cap F| \ge s$ for some $F \in \mathscr{F}$. If $S \cap A_s = \emptyset$, this is clearly the case since \mathscr{F}_s^* does not have property B(s). Thus suppose $\exists a_s \in S \cap A_s$. If $S \cap A_{s-1} = \emptyset$, S must meet each member of \mathscr{F}_{s-1}^* and, since \mathscr{F}_{s-1}^* does not have property B(s-1), must contain s-1 elements of some member of \mathscr{F}_{s-1}^* . In view of (iv)' these s-1 elements must cour in some member of \mathscr{F}_s^* . This, and the fact that a_s is in every member of (\mathscr{F}_s^*, A_s) , yields the desired conclusion. We may therefore suppose $\exists a_{s-1} \in S \cap A_{s-1}$. If $S \cap A_{s-2} = \emptyset$ we find, by repetition of the above argument, that S must contain s-2 elements of some member of \mathscr{F}_{s-2}^* . These elements, together with a_{s-1} , occur in some member of \mathscr{F}_s^* and S thus contains s elements of some member of (\mathscr{F}_s^*, A_s) . It is clear that repetition of this argument leads to the conclusion that \mathscr{F} does not have property B(s).

Proof of Theorem 2. For $1 \le k \le s$, let \mathscr{V}_k be the family constructed in the proof of Theorem 1. For each $H \in \mathscr{H}_k$ choose an element $h \in \overline{H}$ and let H' be the set obtained from H by replacing 0 (the zero vector) by h. Let $\mathscr{V}_k' = \{H' : H \in \mathscr{H}_k\}$. We now show that the choice $I_k = 2^{k-1}$ and $\mathscr{F}_k = \mathscr{V}_k \cup \mathscr{V}_k'$ in the tower construction is a legitimate one in that conditions (i)—(v) are satisfied.

 \mathscr{F}_k consists of $2^{k+1}-2$ sets, each of size 2^{k-1} , and $|\hat{\mathscr{F}}_k|=2^k-1$. It is clear that \mathscr{F}_k does not have property B(k) (because \mathscr{V}_k does not) and that every (k-1)-subset of $\hat{\mathscr{F}}_k$ occurs in some member of \mathscr{F}_k (in fact, in some member of \mathscr{V}_k). Thus, (i), (ii) and (iii) are satisfied.

We verify that (iv) holds; that is, $|\hat{\mathscr{F}}_{k+1}^*| \ge |\hat{\mathscr{F}}_k^*|$ for $1 \le k \le s-1$. We have

(3)
$$|\hat{\mathscr{F}}_{k+1}^*| - |\hat{\mathscr{F}}_k^*| = (2^{k+1} - 1) q_{k+1} - (2^k - 1) q_k = 2^k (2q_{k+1} - q_k) + (q_k - q_{k+1}).$$

It is obvious that $q_k \ge q_{k+1}$ so that if $2q_{k+1} - q_k \ge 0$ we are through. We also have $q_{k+1}2^k + r_{k+1} = q_k 2^{k\pm 1} + r_k$ (=n) so that $2^{k-1}(q_k - 2q_{k+1}) = r_{k+1} - r_k < 2^k$ from which we get $q_k - 2q_{k+1} \le 1$. There remains only the possibility that $q_k - 2q_{k+1} = 1$. We then get, from (3),

$$\begin{split} |\hat{\mathcal{F}}_{k+1}^*| - |\hat{\mathcal{F}}_k^*| &= 2(r_k - r_{k+1}) + q_{k+1} + 1 = \\ &= 2(r_k - r_{k+1}) + \frac{n - r_{k+1}}{2^k} + 1 = \\ &= \frac{1}{2^k} \left(n + 2^{k+1} r_k - (2^{k+1} + 1) r_{k+1} + 2^k \right). \end{split}$$

Now $r_{k+1} = r_k$ or $2^{k-1} + r_k$. Thus

$$|\hat{\mathscr{F}}_{k+1}^*| - |\hat{\mathscr{F}}_k^*| \ge \frac{1}{2^k} (n - 2^{2k} - r_k + 2^{k-1}) > \frac{1}{2^k} (n - 2^{2k}) > 0,$$

since $n \ge 5 \cdot 2^{2s-3}$. Thus (iv) is satisfied.

In order for (v) to hold we must have

$$(2^{s-1}-1)q_{s-1}+r_{s-1}+r_{s-2}+\ldots+r_{t+1} \leq (2^s-1)q_s$$

This inequality is equivalent to

$$(2^{s-1}-1)\left(\frac{n-r_{s-1}}{2^{s-2}}\right)+r_{s-1}+r_{s-2}+\ldots+r_{t+1} \le (2^s-1)\left(\frac{n-r_s}{2^{s-1}}\right)$$

and this in turn to

(4)
$$n \ge 2^{s-1}(r_{s-2} + \ldots + r_{t+1}) + (2-2^{s-1})r_{s-1} + (2^s-1)r_s.$$

The right side of (4) assumes its largest value when t=1, $r_{s-1}=1$ and $r_k=2^{k-1}-1$ for $k\neq s-1$. It is then easy to check that, if $n\geq 5\cdot 2^{2s-3}$, (4), and hence also (v), is satisfied. It now follows that the family $\mathscr F$ manufactured by the tower construction does not have property B(s). Since

$$|\mathscr{F}| \leq \sum_{k=1}^{s} (2^{k+1}-2) = 2^{s+2}-2s-4,$$

(2) holds for all $s \ge 1$, $n \ge 5 \cdot 2^{2s-3}$.

We conclude with some remarks.

It may be the case that for every $s \ge 4$, the inequality m(n, s) < m(s) holds for some n. For example, Aizley and Selfridge [3] have announced that $m(4) \ge 19$ and Theorem 1 gives $m(8, 4) \le 15$. However, we do not know whether m(n, 5) < m(5) for any n.

The choice $\mathscr{F}_k = \mathscr{V}_k \cup \mathscr{V}_k'$ in the proof of Theorem 2 may not be the most appropriate one, in the sense that a different choice may yield a better upper bound for m(n,s). It should be noted, however, that it would not suffice to choose $\mathscr{F}_k = \mathscr{V}_k$ since, for $k \ge 4$, there are (k-1)-subsets of \mathscr{V}_k which are not in the complement of any hyperplane. Nor would it suffice to choose $\mathscr{F}_k = \mathscr{V}_k'$. \mathscr{V}_k' has the property that every (k-1)-subset of \mathscr{V}_k' occurs in some member, but, unfortunately, it has property B(k). We are presently investigating other candidates and hope to be able to report on these investigations in a subsequent paper.

It would not suffice in constructing \mathscr{F}_k to take $\mathscr{V}_k' = \{H: H \in \mathscr{H}_k\}$ because then $|\hat{\mathscr{F}}_k| = 2^k$ and (iv) and (v) would fail to hold. This is the reason for trading 0 for h.

References

- H. L. Abbott and A. Liu, On property B(s), Ars Combinatoria, 7 (1979), 255—260.
 H. L. Abbott and A. Liu, On property B(s) II, Discrete. Mathematics, 37 (1981), 135—141.
 P. Alzley and J. E. Selfridge, Notices, Amer. Math. Soc. 24 (1977), A-452.
 J. Beck, On 3-chromatic hypergraphs, Discrete Mathematics, 24 (1978), 127—137.
 J. Spencer, Coloring n-sets red and blue, J. Combinatorial Theory, A, 30 (1981), 112—113.

H. L. Abbott, A. Liu

University of Alberta Edmonton, Alberta Canada T6G 2G1